Appendix E. Engineering Drawings
(Part 5 of 10)
This page is intentionally left blank.
SELECTED BY ARCHITECT FROM MANUFACTURER'S FULL RANGE.

PROVIDE 1/4" THICK HDPE BOLLARD COVER. COLOR TO BE STD. WALL 6" DIA. GALV. STEEL PIPE FILLED WITH CONCRETE.

PROPOSED GRADE AT PERIMETER.

FROM BOLLARD. MATCH SLOPE TOP OF FOOTING AWAY 1/2" PJF W/SEALANT FINISH GRADE AS INDICATED PLAN FOR MATERIALS ADJACENT PAVEMENT. SEE CONCRETE FOOTING 20" DIA 3'-0" MIN 4'-0" MAX COMPACTED SUBGRADE COMPACTED SUBGRADE CONCRETE PAVEMENT COMPACTED AGGREGATE SURFACE TOPSOIL/PLANTING SOIL TO BE BUILT STRUCTURE PAVEMENT, CURB, OR ANY FILLER, FULL DEPTH, RECESS 1/2" ASPHALT EXPANSION JOINT FOR DOWEL ASSEMBLY. PROVIDE 1" TO 2" GAP TO ALLOW FOR CONTRACTION OF CONCRETE.

DOWEL #8 AT 18" LONG, EPOXY-COATED 2-#4 BARS

NOTES:
1. CONCRETE TO BE MIN. 4000 PSI.
2. CORE CONCRETE PAVEMENT TO ACCEPT PINS.
3. SEE SPECIFICATION SECTION 321313

ACCESSIBLE PAVEMENT MARKING

INSTALLATION OF SOD IF APPLICABLE.

TOPSOIL SURFACE ELEVATION TO BE ADJUSTED FOR CURBS, OR ANY BUILT STRUCTURES PROHIBITED.

TRANSITIONS OF SOIL PLACEMENT TO PAVEMENTS, SLOPE, FINISH GRADE PER GRADING PLAN. ABRUPT 2.5"

OF THE CONCRETE SLAB THE THICKNESS 2"

OR APPROVED EQUAL CONCRETE, SIKAFLEX-2C NS EZ JOINT SEALANT FOR SELF-LEVELING POLYURETHANE PARKING STALL STRIPE AND IN CENTER OF STALL. CENTERLINE OF SYMBOL SHALL BE PARALLEL TO 4" AND PAINTED WHITE ON BLUE BACKGROUND. SYMBOL SHALL BE APPLIED TO A WIDTH OF 4"

NOTES:
1. INSTALLATION OF SOD IF APPLICABLE.
2. CURBS, OR ANY BUILT STRUCTURES PROHIBITED.
3. TRANSITIONS OF SOIL PLACEMENT TO PAVEMENTS, SLOPE, FINISH GRADE PER GRADING PLAN. ABRUPT 2.5"

OF THE CONCRETE SLAB THE THICKNESS 2"

OR APPROVED EQUAL CONCRETE, SIKAFLEX-2C NS EZ JOINT SEALANT FOR SELF-LEVELING POLYURETHANE PARKING STALL STRIPE AND IN CENTER OF STALL. CENTERLINE OF SYMBOL SHALL BE PARALLEL TO 4" AND PAINTED WHITE ON BLUE BACKGROUND. SYMBOL SHALL BE APPLIED TO A WIDTH OF 4"
1 CONTINUOUS DRIP EDGE

2 CANOPY DETAIL 2

1 1/2" = 1'-0"

CANOPY DETAIL 1

1 1/2" = 1'-0"

TYPICAL CANOPY DETAILS

1 CANOPY DETAIL 1

2 CANOPY DETAIL 2

1 1/2" = 1'-0"

NOT FOR CONSTRUCTION

HDR Engineering, Inc.
8550 W Bryn Mawr Ave., Suite 900
Chicago, IL 60631
www.hdrinc.com

PLOT DATE: 7/20/2017 12:44:24 PM

FILENAME: C:\rvt\2016\WL_AR_SOHAMSTN_02_NEDUN.rvt
1. GUARDRAIL POST

2. GUARDRAIL CLOSURE POST

3. PLATFORM GUARDRAIL ELEVATION

4. BOLTED CONNECTION

- Scale: 1/2" = 1'

- Materials:
 - 1 1/2" GALV STEEL PL POST
 - 1/2" GALV STL PL POST
 - 1/4" STAINLESS STL CABLES W/ HOLE TO ACCOMODATE CABLE HARDWARE
 - 1/2" x 2" PL

- Top of post cut with radius for proper fit with toprail, similar to railing clip, see detail 13

- Shop weld railing clip to railing typ.

- Field bolt posts to railing clips (1/2" DIA. S.S. BOLT WITH HEX CAP NUT), typ.

- See details AR-5503 for typical dimensions & notes

- Designed: HDR Engineering, Inc.
- Drawn: K. Gonzales
- Checked: R. Krieger
- U. Bamert
- 07/21/17

- Northern Indiana Commuter Transportation District
- 33 East Highway 12
- Chesterton, Indiana 46304

- Dyer to Hammond, Indiana

- HDR Engineering, Inc.
- 8550 W Bryn Mawr Ave., Suite 900
- Chicago, IL 60631
- www.hdrinc.com

- Plot date: 7/20/2017 5:31:06 PM

- File: C:\\rvt\2016\WL_AR_SOHAMSTN_02_NEDUN.rvt
TYPICAL BENCH DETAILS

K. Gonzales
R. Krieger
U. Bamert
07/21/17

HDR Engineering, Inc.
8550 W Bryn Mawr Ave., Suite 900
Chicago, IL 60631
www.hdrinc.com

DATE: 07/21/17
FILE: C:\rvt\2016\WL_AR_SOHAMSTN_02_NEDUN.rvt

1 1/2" = 1'-0"

NOT FOR CONSTRUCTION

NORTHERN INDIANA COMMUTER TRANSPORTATION DISTRICT
33 East Highway 12
Chesterton, Indiana 46304

DYER TO HAMMOND, INDIANA

TYPICAL BENCH DETAILS

1 BENCH POST

SEE DETAIL AR-5503 FOR TYPICAL DIMENSIONS & NOTES

BOLTED CONNECTION

1'-6" 3/4" GALV STL PL POST

2'-3 1/2" 2'-9 1/2"

SEE DETAIL AR-5503 FOR TYPICAL DIMENSIONS & NOTES

BENCH POST

1'-6" 3/4" GALV STL PL POST
NOTES:

DRAWING REPRESENTS TYPICAL STATION SYSTEMS.

EQUIPMENT SHOWN IS TO BE RACK MOUNTED IN THE STATION COMMUNICATIONS ROOM.

DEVICES SIMILAR TO THOSE SHOWN IN THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH ARE TO BE CONNECTED TO THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH TO COMMUNICATE VIA 24-STRAND SINGLE MODE FIBER OPTIC CABLE. DEVICES FARTHER THAN 250 FT FROM THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH ARE TO BE CONNECTED TO THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH TO COMMUNICATE VIA 24-STRAND SINGLE MODE FIBER OPTIC CABLE. DEVICES FARTHER THAN 250 FT FROM THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH ARE TO BE CONNECTED TO THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH TO COMMUNICATE VIA 24-STRAND SINGLE MODE FIBER OPTIC CABLE.

THE FOLLOWING STATION ELEMENTS, IF LOCATED WITHIN 100 FT OF THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH, ARE TO BE CONNECTED TO THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH TO COMMUNICATE VIA 24-STRAND SINGLE MODE FIBER OPTIC CABLE. DEVICES FARTHER THAN 250 FT FROM THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH ARE TO BE CONNECTED TO THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH TO COMMUNICATE VIA 24-STRAND SINGLE MODE FIBER OPTIC CABLE.

THE FOLLOWING STATION ELEMENTS, IF LOCATED WITHIN 100 FT OF THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH, ARE TO BE CONNECTED TO THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH TO COMMUNICATE VIA 24-STRAND SINGLE MODE FIBER OPTIC CABLE.

THE FOLLOWING STATION ELEMENTS, IF LOCATED WITHIN 100 FT OF THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH, ARE TO BE CONNECTED TO THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH TO COMMUNICATE VIA 24-STRAND SINGLE MODE FIBER OPTIC CABLE.

THE FOLLOWING STATION ELEMENTS, IF LOCATED WITHIN 100 FT OF THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH, ARE TO BE CONNECTED TO THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH TO COMMUNICATE VIA 24-STRAND SINGLE MODE FIBER OPTIC CABLE.

THE FOLLOWING STATION ELEMENTS, IF LOCATED WITHIN 100 FT OF THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH, ARE TO BE CONNECTED TO THE 24-PORT MANAGED GIGABIT ETHERNET SWITCH TO COMMUNICATE VIA 24-STRAND SINGLE MODE FIBER OPTIC CABLE.
NOTES:

DRAWING REPRESENTS TYPICAL STATION SYSTEMS.

EQUIPMENT SHOWN IS TO BE CONFIGURED MOUNTED WITHIN THE STATION COMMUNICATIONS CABINETS.

ELEMENTS SHOWN ARE PART OF THE STATION LAN NETWORK. STATION COMMUNICATIONS CABINETS TO COMMUNICATE TO STATION COMMUNICATIONS DROP CABLE TO COMMUNICATIONS HUB. SEE COMMUNICATIONS PLANS FOR ADDITIONAL INFORMATION.

STATION MAIN CONNECTION TO BE PROVIDED BY 12-STRAND SINGLE MODE FIBER OPTIC CABLE TO COMMUNICATIONS HUB. SEE COMMUNICATIONS PLANS FOR ADDITIONAL INFORMATION.

SEE ELECTRICAL PLANS FOR ADDITIONAL INFORMATION.

NUMBER AND LOCATION OF EQUIPMENT MAY VARY. NOT ALL EQUIPMENT MAY BE REQUIRED. NUMBER OF SWITCHES TO BE DETERMINED BY THE NUMBER OF REQUIRED PORTS. LOCATION AND PORTS MAY VARY.

SEE STATION SYSTEMS AND SECURITY BASIS OF DESIGN DOCUMENT FOR ADDITIONAL INFORMATION.

THE FOLLOWING STATION ELEMENTS, IF LOCATED WITHIN 150 FT OF THE 12-PORT MANAGED GIGABIT ETHERNET SWITCH, ARE TO BE CONNECTED TO THE 12-PORT MANAGED ETHERNET SWITCH VIA CAT 6 CABLE.

- CCTV CAMERAS
- EMERGENCY TELEPHONES
- REAL-TIME PASSENGER INFORMATION SYSTEM DISPLAYS WITH INTEGRATED CONTROLLERS
- TICKET VENDING MACHINES
- CCTV CAMERAS
- REAL-TIME PASSENGER INFORMATION SYSTEM DISPLAYS WITH INTEGRATED CONTROLLERS
- EMERGENCY TELEPHONES

DROP CABLE TO COMMUNICATIONS HUB. SEE COMMUNICATIONS PLANS FOR ADDITIONAL INFORMATION.

STATION WAN CONNECTION TO BE PROVIDED BY 12-STRAND SINGLE MODE FIBER OPTIC CABLE.

CABINETS TO COMMUNICATE TO STATION COMMUNICATIONS HUB VIA 24-STRAND SINGLE MODE FIBER OPTIC CABLE.

EQUIPMENT SHOWN IS TO BE DIN-RAIL MOUNTED WITHIN THE STATION COMMUNICATIONS CABINETS.

DRAWING REPRESENTS TYPICAL STATION SYSTEMS.

SYSTEMS - NETWORKING DETAIL 2

STATION COMMUNICATIONS CABINET SYSTEMS DETAIL (TYP.)

NOT FOR CONSTRUCTION
GENERAL IMPROVEMENT NOTES
1. UTILITIES SHOWN ARE APPROXIMATE. FIELD VERIFY PRIOR TO CONSTRUCTION.
2. DIMENSIONS ARE TAKEN FROM THE FACE OF CURBS, WALLS OR BUILDINGS UNLESS OTHERWISE NOTED.
3. ALL AREAS DISTURBED, NOT BUILT, PAVED OR OTHERWISE CHANGED BY CONSTRUCTION, SHALL BE SEeded WITH A PERMANENT TYPE TURFGRASS.
4. NOT ALL KEY NOTES USED ON EVERY SHEET.

SITE IMPROVEMENT KEY
1. CONCRETE PARKING, TYPE 2
2. CONCRETE PARKING, TYPE 1
3. CONCRETE PAVEMENT, TYPE 2
4. CONCRETE PAVEMENT, TYPE 1
5. ASPHALT PAVEMENT, TYPE 2
6. ASPHALT PAVEMENT, TYPE 1
7. CONCRETE CURB
8. OUTDOOR WASTE RECEPTACLE
9. ACCESSIBLE PARKING POST SIGN
10. ACCESSIBLE PARKING PAVEMENT MARKING
11. DECORATIVE CONCRETE PAVEMENT
12. BOLLARD
13. CONCRETE PARKING BLOCK
14. PAVEMENT MARKING - 4"
15. PAVEMENT MARKING HATCH - 4" @ 3' O.C., 45°
16. PAVEMENT MARKING CROSSWALK - 24" W, 8' L, @ 4' O.C.
17. DECORATIVE PICKET FENCE
18. LOUVERED SCREEN ENCLOSURE
19. DUMPSTER
20. UTILITY
21. COMPACTED AGGREGATE STORAGE
22. BALLAST (REFER TO TRACK DRAWINGS)
23. BICYCLE RACK
24. OUTDOOR TABLE WITH SEATING
25. CONCRETE CURB TURNOUT
26. ACCESSIBLE CURB RAMP
27. MASONRY SEATWALL PLANTER
28. LOUVERED SCREEN GATE

LANDSCAPE PLANTING LEGEND
- DECIDUOUS SHADE TREE
- DECIDUOUS ORNAMENTAL TREE
- EVERGREEN TREE
- SHRUB / PERENNIAL
- TURFGRASS SEEDING
- NATIVE GRASS/FORB SEEDING
GENERAL IMPROVEMENT NOTES:
1. UTILITIES SHOWN ARE APPROXIMATE. FIELD VERIFY PRIOR TO CONSTRUCTION.
2. DIMENSIONS ARE TAKEN FROM THE FACE OF CURBS. RULED STREETS BUILDINGS UNLESS OTHERWISE NOTED.
3. ALL AREA SYMBOLS, NOT TO SCALE, MAY BE RECOGNIZED AT APPROXIMATE SCALE OF 1:500.
4. NOT ALL KEY NOTES USED ON EVERY SHEET.

SITE IMPROVEMENT KEY:
- CONCRETE PAVEMENT, TYPE 1
- CONCRETE PAVEMENT, TYPE 2
- ASPHALT PAVEMENT, TYPE 1
- ASPHALT PAVEMENT, TYPE 2
- CONCRETE CURB, LID
- CONCRETE CURB, FLAMINGOS
- EVERGREEN TREE
- DECIDUOUS SHADE TREE
- DECIDUOUS ORNAMENTAL TREE
- DECIDUOUS GRASS TREE
- SHRUB / PERENNIAL
- TURFGRASS SEEDING
- NATIVE GRASS/FORB SEEDING

LANDSCAPE PLANTING LEGEND:
- DECIDUOUS GRASS TREE
- DECIDUOUS ORNAMENTAL TREE
- EVERGREEN TREE
- SHRUB / PERENNIAL
- TURFGRASS SEEDING
- NATIVE GRASS/FORB SEEDING

SCALE: 1" = 40'

MATCHLINE SEE SHEET SITE PLAN 04
HAMMOND MAINTENANCE FACILITY SITE DESIGN
MAINTENANCE FACILITY GRADING PLAN

Scale 1" = 40'

GENERAL GRADING/DRAINAGE NOTES

A. PROPOSED GRADES AND SLOPES SHALL MATCH EXISTING GRADES AND SLOPES SHOWN ON DRAWING, IF V.

B. UTILITIES AND UNDERGROUND OBSTACLES SHOWN AND APPROXIMATE DOLLY VENTILITY TO LOCATION FROM COMMENCEMENT TO COMPLETION OF CONSTRUCTION WORK. THE CONTRACTOR SHALL BE RESPONSIBLE FOR DAMAGE TO UTILITIES AND UTILITY LINES INCURRED DURING CONSTRUCTION.

C. PROPOSED NEW GRADES SHALL BE DESIGNED FOR POSITIVE DRAINAGE TO A DRAINAGE STRUCTURE OR DETENTION POND.

D. NO OPEN TRENCHES WILL BE ALLOWED IN THE EXISTING GRADING. CONSTRUCTION TRENCHES SHALL BE SWEEPED AND DIRT ROLLED TO ENSURE CONSTRUCTION TRENCHING IS NOT A DANGER TO PUBLIC SAFETY.

E. CONTRACTOR SHALL RELOCATE OR REPAIR ANY UTILITY OR STRUCTURE WHICH MAY HINDER CONSTRUCTION. DETAILED UTILITY LOCATION PRIOR TO COMMENCEMENT OF PROJECT AS SHOWN ON DRAWING, TYP.

NOT FOR CONSTRUCTION

NOTICE: WEST LAKE CORRIDOR, ININ-IC;25 TO IC-40;19, 2017

SCALE: 1" = 40'
GENERAL GRADING/DRAINAGE NOTES

A. PROPOSED GRADING AND SLOPES SHALL MATCH EXISTING SLOPES AND GRADES AS SHOWN ON DRAWING.

B. SITE TRENCHES AND UNDERGROUND DISTANCES SHOWN ARE APPROXIMATE. TRENCHES SHALL BE DIGGED AND PROPOSED SITE TO MEET THE REQUIREMENTS OF EARTHWORK AND UTILITIES AGREEMENT.

C. PROPOSED FINISHED GRADES SHALL PROVIDE FOR 6% PERPENDICULAR RADIUS CURVE FOR MEANINGFUL TRENCHING AREAS.

D. NO OPEN TRENCHES WILL BE ALLOWED IN THE ENERGY APPROPRIATELY TO PROVIDE ADEQUATE SAFETY FOR OPERATIONS. CONTRACTOR TO PROVIDE CONSTRUCTION FENCING AROUND ANY TRENCHING AREAS FOR PUBLIC SAFETY.

E. CONTRACTOR SHALL PREPARE AND CONSTRUCT TRENCHES ALONG PROPOSED GRADES WHICH MAY OCCUR THROUGH EXISTING GRADES OR SLOPES. WORK SHALL BE AS SHOWN AND CONSTRUCTED TO AVOID DAMAGE TO OBSTRUCTIONS AND UTILITY INSTALLATIONS.

F. GENERAL MATERIALS SHALL BE SOIL FROM ON-SITE OR DISPOSAL POINTS AS SHOWN.

G. CONTRACTOR SHALL PROVIDE ADEQUATE TRENCHING AND OPEN TRENCHES WILL NOT BE ALLOWED.

NOT FOR CONSTRUCTION

M A T C H L I N E S E E S H E E T G R A D I N G P L A N

MAINTENANCE FACILITY GRADING PLAN

Scale: 1" = 40'

MATCHLINE SEE SHEET GRADING PLAN 01

Special Contours

New Drainage Pipe

New Drainage Manhole

New Drainage Inlet

New Drainage End Section

Existing Contours

Proposed Contours

Proposed Grades

Proposed Gr
GENERAL UTILITY NOTES

A. UTILITIES SHOWN ARE APPROXIMATELY FIELD ACTUAL AND ARE FOR ESTIMATING PURPOSES ONLY. CONTRACTOR SHALL BE RESPONSIBLE FOR ANY UPDATES TO THE FIELD CONSTRUCTION.

B. COORDINATE ALL UTILITY CONNECTIONS WITH THE CITY OF HAMMOND WATER DEPARTMENT. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY UPDATES TO THE FIELD CONSTRUCTION.

C. NO DEEP TRENCHES WILL BE ALLOWED IN THE EXISTING MATURE CONSTRUCTION. CONTRACTOR SHALL BE RESPONSIBLE FOR ANY UPDATES TO THE FIELD CONSTRUCTION.

D. CONTRACTOR SHALL BE RESPONSIBLE FOR ANY DAMAGE TO EXISTING UTILITY LINES. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY UPDATES TO THE FIELD CONSTRUCTION.

E. ALL WATER MAINS SHALL BE INSTALLED A MINIMUM OF 5 FEET BELOW PROPOSED GRADE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY UPDATES TO THE FIELD CONSTRUCTION.

F. CONTRACTOR SHALL COORDINATE WITH THE CITY OF HAMMOND WATER DEPARTMENT FOR CONSTRUCTION TO THE EXISTING WATER SERVICE.

G. CONTRACTOR SHALL COORDINATE WITH THE CITY OF HAMMOND SANITARY DEPARTMENT FOR CONSTRUCTION TO THE EXISTING SANITARY SERVICE.

H. WHEN SIGNATORY WATER UTILITIES ENCOUNTER ANY EXISTING UTILITY LINES DURING CONSTRUCTION, THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY UPDATES TO THE FIELD CONSTRUCTION.

I. CONSTRUCTION SHALL DEFLECT THE WATER MAIN TO MINIMIZE THE DISTURBANCE OF EXISTING UTILITY LINES. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY UPDATES TO THE FIELD CONSTRUCTION.

J. GAS MAIN INSTALLATION AND CONSTRUCTION SHALL BE COORDINATED WITH THE CONTRACTOR.

NOT FOR CONSTRUCTION
GENERAL UTILITY NOTES

A. UTILITIES ARE APPROXIMATELY 0.03' IN VERTICAL PRECISION, AND THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY ADJUSTMENTS NEEDED TO CONSTRUCT OUR UTILITY LINES.

B. COORDINATE ALL UTILITY CONNECTIONS WITH CORRESPONDING CONTRACTORS AT LEAST 48 HOURS IN ADVANCE PRIOR TO EXCAVATING.

C. NO OPEN TRENCHES WILL BE ALLOWED IN THE TRAFFIC MEDIAN Area, OR ELSE NEW UTILITY LINES AND ADEQUATE SHORING WILL BE REQUIRED.

D. CONTRACTOR IS RESPONSIBLE FOR ANY SANITARY PIPELINE OR UTILITY LINES LAYED IN THE TRENCHING AREA FOR PUBLIC SAFETY.

E. CONTRACTOR SHALL CONSTRUCT A PAD OR ENCLOSED AREA FOR CONSTRUCTION PURPOSES.

F. CONTRACTOR SHALL COORDINATE WITH THE CITY OF HAMMOND WATER DEPARTMENT FOR CONSTRUCTION OF THE WATER MAIN TO THE CITY OF HAMMOND WATER DEPARTMENT.

G. CONTRACTOR SHALL COORDINATE WITH THE CONTRACTOR’S ENGINEER OR ARCHITECT FOR SUPPORTING, BRACING, OR SHORING REQUIRED TO PREVENT DAMAGE TO UTILITIES.

H. CONTRACTOR SHALL CONSTRUCT THE WATER MAIN TO THE SPECIFICATIONS AND CONSTRUCTION OF THE WATER MAIN AS NOTED.

I. CONTRACTOR SHALL CONSTRUCT THE EXISTING WATER SERVICE TO THE SPECIFICATIONS AND CONSTRUCTION OF THE EXISTING WATER SERVICE AS NOTED.

J. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING WATER MAIN TO THE CITY OF HAMMOND WATER DEPARTMENT.

K. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING SANITARY SEWER TO THE CITY OF HAMMOND WATER DEPARTMENT.

L. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING GAS MAIN TO THE CITY OF HAMMOND WATER DEPARTMENT.

M. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

N. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

O. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

P. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

Q. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

R. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

S. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

T. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

U. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

V. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

W. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

X. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

Y. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

Z. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

AA. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

BB. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

CC. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

DD. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

EE. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

FF. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

GG. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

HH. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

II. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

JJ. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

KK. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

LL. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

MM. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

NN. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

OO. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

PP. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

QQ. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

RR. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

SS. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

TT. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

UU. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

VV. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

WW. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

XX. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

YY. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.

ZZ. CONTRACTOR SHALL CONSTRUCT THE CITY OF HAMMOND WATER DEPARTMENT FOR THE EXISTING UTILITIES TO THE CITY OF HAMMOND WATER DEPARTMENT.
UNDERGROUND PIT PLAN
1. Piles are currently expected to require following allowable load capacities: A) Axial Compressive = 50 Tons. B) Axial Tensile = 10 Tons. C) Horizontal = 5 Tons.

2. Piles are assumed to be HP14 and length of 40 feet below the bottom of pile cap.

3. 2'-6" wide strips of slab-on-grade shall be thickened to 12" under interior walls.
NOTE:
1. INFILL BEAMS SHALL BE COMPOSITE AND SHEAR STUDS SHALL BE
 REQUIRED TO BE WELDED TO TOP FLANGE OF STEEL BEAMS TO
 FACILITATE COMPOSITE BEHAVIOR.
NOTES:

1. OVERHEAD GANTRY CRANE WITH LOAD RATING OF 15 TONS.
2. HORIZONTAL LOAD FROM THE CRANE, IN THE EAST-WEST DIRECTION, AT THE TOP OF GANTRY SUPPORT COLUMNS SHALL BE TRANSFERRED INTO ADJACENT BUILDING SUPPORT COLUMNS VIA A CONNECTION TAB. THIS TAB SHALL NOT TRANSFER ANY VERTICAL LOAD OR HORIZONTAL LOAD IN THE NORTH-SOUTH DIRECTION FROM THE GANTRY COLUMN INTO THE BUILDING SUPPORT COLUMN.

GANTRY CRANE SUPPORT FRAMING PLAN
1. TOP CHORD, W12 BOTTOM CHORD, AND W8 WEB MEMBERS. BOTTOM CHORD W12 SHALL BE LAID FLAT. TRUSS SHALL BE PARALLEL CHORD WITH AN OVERALL DEPTH OF 5 FEET. TRUSS SHALL BE CONNECTED EAST-WEST DIRECTION.

2. ENGINEERED STRUCTURAL STEEL TRUSS (ST-2) COMPRISES OF W12 TOP AND BOTTOM CHORDS AND W8 WEB MEMBERS. BOTTOM CHORD OVERALL DEPTH OF 8 FEET. TRUSS SHALL BE CONNECTED WITH THE COLUMNS SO AS TO CREATE MOMENT-RESISTING FRAME IN EAST-WEST DIRECTION.
NOTES:

1. WEAK AND UNSUITABLE SOIL UNDER TRACKS, MAINTENANCE PITS, STRIP FOUNDATIONS, AND SLAB-ON-GRADE SHALL BE REMOVED TO TOP OF SUITABLE SOIL. EXPOSED BEARING STRATUM SHALL BE COMPACTED AND PREPARED. OVER-EXCAVATION SHALL BE FILLED WITH COMPACTED ENGINEERED FILL AND / OR CONTROLLED LOW STRENGTH MATERIAL (CLSM).

2. A MINIMUM 8" THICK LAYER OF COMPACTED #57 STONE SHALL BE PROVIDED UNDER SLAB-ON-GRADE AND STRIP FOUNDATIONS.

3. A MINIMUM 18" THICK LAYER OF COMPACTED #57 STONE SHALL BE PROVIDED UNDER THIS AREA.

4. BACKFILL AGAINST SIDE WALLS OF MAINTENANCE PITS AND UNDER THICKENED SLAB-ON-GRADE SHALL CONSIST OF CONTROLLED LOW STRENGTH MATERIAL (CLSM). SEE NOTE 3 FOR COMPACTED #57 STONE REQUIREMENTS.

21" MIN THICK SLAB-ON-GRADE (ALL AROUND MAINTENANCE PIT FOR PORTABLE JACK - TYP) SEE NOTES 1 AND 2

SEE NOTES 1 AND 3

SEE NOTE 4

SEE NOTE 4

SEE NOTE 4

SEE NOTES 1 AND 3 (TYP)
WEAK AND UNSUITABLE SOIL UNDER TRACKS, MAINTENANCE PITS, AND SLAB-ON-GRADE SHALL BE REMOVED TO TOP OF SUITABLE SOIL. UNSUITABLE SOILS UNDER TRACKS TO BE COMPACTED AND PREPARED. OVER-EXCAVATION SHALL BE FILLED WITH CONTROLLED LOW STRENGTH MATERIAL (CLSM).

A MINIMUM 8" THICK LAYER OF COMPACTED #57 STONE SHALL BE PROVIDED UNDER SLAB-ON-GRADE.

A MINIMUM 18" THICK LAYER OF COMPACTED #57 STONE SHALL BE PROVIDED UNDER THIS AREA.

ALL BACKFILL BETWEEN WHEEL TRUING PIT AND DROP TABLE PIT SHALL CONSIST OF CONTROLLED LOW STRENGTH MATERIAL (CLSM). SEE NOTES 2 AND 3 FOR COMPACTED #57 STONE REQUIREMENTS.

BACKFILL AGAINST (ALL) PIT WALLS SHALL CONSIST OF CONTROLLED LOW STRENGTH MATERIAL (CLSM) WHERE SLAB-ON-GRADE EXISTS ADJACENT TO THE PITS. SUCH BACKFILL SHALL HAVE A SIDE SLOPE OF NO MORE THAN 45 DEGREES FROM THE HORIZONTAL STARTING AT THE OUTER EDGES OF BASE OF EXCAVATION. SEE OTHER NOTES FOR COMPACTED #57 STONE REQUIREMENTS.

BACKFILL AGAINST NORTH AND SOUTH WALLS OF DROP TABLE PIT SHALL CONSIST OF CONTROLLED LOW STRENGTH MATERIAL (CLSM) FOR A MINIMUM WIDTH OF 20' CENTERED ON THE TRACK AND FOR A MINIMUM DISTANCE OF 40 FEET FROM THE EXTERIOR FACE OF PIT WALLS. SEE OTHER NOTES FOR COMPACTED #57 STONE REQUIREMENTS.
NOTE:
1. COLUMN SECTIONS IN THE VICINITY OF THE TRUSS SHALL BE REINFORCED WITH WELDED CARBON STEEL PLATES TO FACILITATE MOMENT CONNECTION AND WITHSTAND AMPLIFIED STRESSES.
1. ROOF FRAMING (WITHOUT T/O STAIRWELL)
Cable and Conduit Schedule

<table>
<thead>
<tr>
<th>Legend Number</th>
<th>Cable Description Quantities</th>
<th>Conduit Size (Diameter)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6 sets 4 #400 kcmil & 1 #500 kcmil grid</td>
<td>(2) 4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>12 #42 awg</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>6 sets 4 #400 kcmil & 1 #500 kcmil grid</td>
<td>(2) 4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2 sets 4 #400 kcmil & 1 #400 mgc grid</td>
<td>(2) 4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4 #400 mgc & 3 #400 mgc 6 Make</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1 #500 kcmil grid</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>5 #400 kcmil & 1 #400 kcmil grid</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1 #500 kcmil grid</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>1 #500 kcmil grid & 1 #400 kcmil grid</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>4 #500 kcmil & 1 #400 mgc grid</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>2 #500 mgc grid</td>
<td>1</td>
<td>4.5</td>
</tr>
<tr>
<td>12</td>
<td>3 #1 awg & 2 #400 mgc grid</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>4 #400 mgc & 1 #2 mgc grid</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>2 #2 mgc grid</td>
<td>1</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Notes:
1. See sheets R-0011 and R-0012 for electrical, civil, survey, and preliminary notes.
2. See schedule D-0013 for structural steel, segmental concrete, and civil notes.
3. Schedule D-0014 contains notes on the project.
4. Conduit to be grc.
5. Grounding cable organized by 10 foot kcmil 4/0 kcmil, 4/0 kcmil, 2/0 mgc, 2/0 mgc, 2/0 mgc, 2/0 mgc.
Panel: DP-1 Main 800A MCB

Voltage: 480/277V, 3P, 4W

Mounting Enclosure: NEMA 1 BUS xxxA WITH GROUND BUS

<table>
<thead>
<tr>
<th>BREAKERS LOAD (VA)</th>
<th>LOAD (VA)</th>
<th>BREAKERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRCUIT USE</td>
<td>TRIP POLE</td>
<td>A</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>567891</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 22 23 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 28 29 30 31 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 36 37 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Breaker Loads:
- **Phase A:** 0 VA
- **Phase B:** 0 VA
- **Phase C:** 0 VA

Total Connected VA: 0 VA

Connected 1.25X Amps: 0 A

Panel: DP-2 Main 800A MCB

Voltage: 480/277V, 3P, 4W

Mounting Enclosure: NEMA 1 BUS xxxA WITH GROUND BUS

<table>
<thead>
<tr>
<th>BREAKERS LOAD (VA)</th>
<th>LOAD (VA)</th>
<th>BREAKERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRCUIT USE</td>
<td>TRIP POLE</td>
<td>A</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>567891</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 22 23 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 28 29 30 31 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 36 37 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Breaker Loads:
- **Phase A:** 0 VA
- **Phase B:** 0 VA
- **Phase C:** 0 VA

Total Connected VA: 0 VA

Connected 1.25X Amps: 0 A

Panel: DP-3 Main 800A MCB

Voltage: 480/277V, 3P, 4W

Mounting Enclosure: NEMA 1 BUS xxxA WITH GROUND BUS

<table>
<thead>
<tr>
<th>BREAKERS LOAD (VA)</th>
<th>LOAD (VA)</th>
<th>BREAKERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIRCUIT USE</td>
<td>TRIP POLE</td>
<td>A</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>567891</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 22 23 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 28 29 30 31 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 36 37 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 44</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Breaker Loads:
- **Phase A:** 0 VA
- **Phase B:** 0 VA
- **Phase C:** 0 VA

Total Connected VA: 0 VA

Connected 1.25X Amps: 0 A
Panel Board Schedules

Panel: LP-4 Main 225A MCB

Voltage: 120/208V, 3P, 4W
Mounting Enclosure: NEMA 1 BUS xxxA WITH GROUND BUS

<table>
<thead>
<tr>
<th>Circuit Use</th>
<th>Trip Pole</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Breakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Panel: LP-3 Main 225A MCB

Voltage: 120/208V, 3P, 4W
Mounting Enclosure: NEMA 1 BUS xxxA WITH GROUND BUS

<table>
<thead>
<tr>
<th>Circuit Use</th>
<th>Trip Pole</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Breakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Panel: LP-2 Main 400A MCB

Voltage: 120/208V, 3P, 4W
Mounting Enclosure: NEMA 1 BUS xxxA WITH GROUND BUS

<table>
<thead>
<tr>
<th>Circuit Use</th>
<th>Trip Pole</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Breakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Panel: LP-1 Main 400A MCB

Voltage: 120/208V, 3P, 4W
Mounting Enclosure: NEMA 1 BUS xxxA WITH GROUND BUS

<table>
<thead>
<tr>
<th>Circuit Use</th>
<th>Trip Pole</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Breakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPARE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total Connected VA: 0 VA
AMPS: 0 A
1.25X AMPS: 0 A

NOTES:

- See sheet lists and addenda for electrical symbols, list, abbreviations, and general notes.
Room Finish Schedule

<table>
<thead>
<tr>
<th>No.</th>
<th>Room No.</th>
<th>Area</th>
<th>Finish</th>
<th>Color</th>
<th>Code</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>200</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>300</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>400</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>500</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>600</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>700</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>800</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>900</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
</tbody>
</table>

Door and Frame Schedule

<table>
<thead>
<tr>
<th>Room No.</th>
<th>Door No.</th>
<th>Width</th>
<th>Height</th>
<th>Type</th>
<th>Panel</th>
<th>Frame</th>
<th>Glazing</th>
<th>Type</th>
<th>Material</th>
<th>Finish</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>110</td>
<td>110</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>120</td>
<td>120</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>130</td>
<td>130</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>140</td>
<td>140</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>150</td>
<td>150</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>160</td>
<td>160</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>170</td>
<td>170</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>180</td>
<td>180</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>190</td>
<td>190</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td>CONC</td>
<td></td>
</tr>
</tbody>
</table>

Window Schedule

<table>
<thead>
<tr>
<th>Type</th>
<th>Color</th>
<th>Width</th>
<th>Height</th>
<th>Material</th>
<th>Notes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>CONC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>CONC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>CONC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>CONC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>CONC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>CONC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>CONC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>CONC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>CONC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend and Abbreviations:
- BLK: Block
- CONC: Concrete
- CONC: Concrete Block
- LT: Laminate Tile
- MET: Metal
- PAINT: Paint
- SB: Solid Surface
- RE: Resist-Ent Floring
- DRY: Drywall
- EXPOS: Exposed
FIRE PROTECTION GENERAL

ZONE 1
10,000 SF
B1/S-1 AND H-3/4 OCCUPANCIES
EXPOSED AND CONCEALED SPRINKLER HEADS

REFERENCES

1. ACKNOWLEDGEMENTS

ABBREVIATIONS

FIRE PROTECTION BASIS OF DESIGN

WET PIPE
SYSTEM

OPERATIONAL DIAGRAM

NOT FOR CONSTRUCTION

CONSO CONSIST WASH FIRE-GENERAL
NOTES AND FLOORPLAN

DYER TO HAMMOND, INDIANA

NORTHERN INDIANA COMMUNITY
TRANSPORTATION DISTRICT
33 East Highway 13
Chesterton, Indiana 46304

WEST LAKE
CORRIDOR

DLZ

HDR

MICROSOFT EXCEL WORKBOOK

Page 347 OF 361
NOTES:
1. SEE SHEETS E-7400 AND E-7401 FOR ELECTRICAL SYMBOL LIST, ABBREVIATIONS, AND GENERAL NOTES.
2. SEE SHEET E-7402 FOR CABLE AND CONDUIT SCHEDULE.
3. 2" PVC SCHEDULE 40 CONDUIT TO NAPCO POLE.
4. 4" PVC SCHEDULE 40 CONDUIT R/E DATA COMMUNICATIONS, TELEPHONE, AND FIBER OPTIC.
5. 3/4" E-4-4-4 EPG RATED (EPOXY BOARD FOR COMMUNICATIONS)
6. COMUNICATIONS RACK.
7. FIBER-TO-AXIS TERMINAL (FATI)
8. PUBLIC ADDRESS SYSTEM RACK.

ELECTRICAL ROOM N-09 ENLARGED PLAN

SCALE: 1/16" = 1'-0"

SCALE: 1/12" = 1'-0"
<table>
<thead>
<tr>
<th>LEGEND NUM</th>
<th>CABLE DESCRIPTION</th>
<th>QUANTITY/SIZE</th>
<th>CONDUCT SIZE (OREG)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3 SETS 4 #400 KOPEL & 1 #300 KOPEL GRID</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1 #420 AVG</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3 SETS 4 #400 KOPEL & 1 #300 KOPEL GRID</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>2 #400 AVG & 1 #4 AVG GRID</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1 89 JIS LINE</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>6 #420 AVG & 1 #4 AVG GRID</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>6 #420 AVG & 1 #4 AVG GRID</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>2 SETS 4 #500 KOPEL & 1 #4 AVG GRID</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>4 #4 AVG & 1 #4 OREG</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>1 #420 KOPEL GRID</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Panel: LP-1 Main 225A MCB

Voltage: 120/208V, 3P, 4W Mounting

Enclosure: NEMA 1 Bus 250A with Ground Bus

<table>
<thead>
<tr>
<th>Circuit Use</th>
<th>Trip Pole A</th>
<th>B</th>
<th>C</th>
<th>CKT #</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>11</td>
<td>12</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>13</td>
<td>14</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>15</td>
<td>16</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>17</td>
<td>18</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>21</td>
<td>22</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>23</td>
<td>24</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>25</td>
<td>26</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>27</td>
<td>28</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>29</td>
<td>30</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>31</td>
<td>32</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>33</td>
<td>34</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>35</td>
<td>36</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>37</td>
<td>38</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>39</td>
<td>40</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>41</td>
<td>42</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
</tbody>
</table>

Total S 000 00 0

Phase A: 0 VA

Phase B: 0 VA

Phase C: 0 VA

Total Connected VA: 0 VA

Amps: 0 A

1.25x Amps: 0 A

Panel: PP-1 Main 200A MCB

Voltage: 480/277V, 3P, 4W Mounting

Enclosure: NEMA 1 Bus 250A with Ground Bus

<table>
<thead>
<tr>
<th>Circuit Use</th>
<th>Trip Pole A</th>
<th>B</th>
<th>C</th>
<th>CKT #</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>11</td>
<td>12</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>13</td>
<td>14</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>15</td>
<td>16</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>17</td>
<td>18</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>21</td>
<td>22</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>23</td>
<td>24</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>25</td>
<td>26</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>27</td>
<td>28</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>29</td>
<td>30</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>31</td>
<td>32</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>33</td>
<td>34</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>35</td>
<td>36</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>37</td>
<td>38</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>39</td>
<td>40</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
<tr>
<td>Spare</td>
<td>20</td>
<td>1</td>
<td>41</td>
<td>42</td>
<td>20</td>
<td>1</td>
<td>SPARE</td>
</tr>
</tbody>
</table>

Total S 000 00 0

Phase A: 0 VA

Phase B: 0 VA

Phase C: 0 VA

Total Connected VA: 0 VA

Amps: 0 A

1.25x Amps: 0 A